Introduction

A general second-order differential equation with variable coefficients is of the form

\[a_2(t) y'' + a_1(t) y' + a_0(t) y = f(t) \]

(1)

or, written in the standard form

\[y'' + p(t) y' + q(t) y = g(t) \]

(2)

Existence and Uniqueness Theorem:

If the function \(p(t) \), \(q(t) \) and \(g(t) \) are continuous on an interval \((a, b)\) that contains the point \(t_0 \), then for any choice of the initial values \(y_0 \) and \(y_1 \), there exists a unique solution on the interval \((a, b)\) of the IVP:

\[y'' + p(t) y' + q(t) y = g(t) ; \quad y(t_0) = y_0 ; \quad y'(t_0) = y_1. \]

(3)

Homogeneous Equations

A condition for the linear independence of solutions:

Two solutions \(y_1(t) \) and \(y_2(t) \) (defined on the interval \(I \)) of the homogeneous differential equation

\[y'' + p(t) y' + q(t) y = 0 \]

(4)

are linearly independent if and only if the Wronskian

\[W[y_1, y_2](t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix} = y_1(t)y'_2(t) - y_2(t)y'_1(t) \]

is non-zero on the whole interval \(I \).

\[\rightarrow \] If two linearly independent solutions \(y_1(t) \) and \(y_2(t) \) of the homogeneous equation (4) are known, the general solution of the homogeneous equation (4) is \(y(t) = c_1 y_1(t) + c_2 y_2(t) \).

\[\rightarrow \] In general, finding two linearly independent solutions is not an easy task. However, if one particular solution \(y_1(t) \) of the homogeneous equation (4) is known, a second linearly independent solution \(y_2(t) \) may be found using the Reduction of Order method.

Reduction of Order:

Let \(y_1(t) \) a non-trivial solution of the homogeneous equation (4). A second, linearly independent solution \(y_2(t) \) of eq. (4) can be found of the form \(y_2(t) = v(t)y_1(t) \), where the function \(v(t) \) is determined by replacing \(y_2 \) in eq. (4), leading to a first-order differential equation in \(v'(t) \).

Non-Homogeneous Equations

A general solution of the non-homogeneous equation (2) on an interval \(I \) can be written as

\[y = y_p + y_{gen}^{hom} \]

where \(y_p \) is a particular solution of the non-homogeneous equation (2) and \(y_{gen}^{hom} \) is the general solution on \(I \) of the associated homogeneous equation (4).

\[\rightarrow \] If the general solution \(y_{gen}^{hom} \) of the homogeneous equation (4) is known, a particular solution \(y_p \) of the non-homogeneous equation (2) can be found using the method of Variation of Parameters.
CAUCHY-EULER (EQUIDIMENSIONAL) EQUATIONS

A Cauchy-Euler equation is a second-order differential equation of the form:

\[a t^2 y'' + b t y' + c y = f(t) \] \hfill (5)

where \(a, b, c \) are real constants.

Homogeneous Cauchy-Euler Equations

A homogeneous Cauchy-Euler equation is of the form

\[a t^2 y'' + b t y' + c y = 0 \] \hfill (6)

where \(a, b, c \in \mathbb{R} \).

Looking for solutions of the form \(y = t^r \) of eq. (6) we obtain the associated characteristic equation:

\[ar^2 + (b - a)r + c = 0 \] \hfill (7)

Method for finding the general solution of the homogeneous equation (6):

- find the roots \(r_1, r_2 \) of the auxiliary equation (7);
- if \(r_1, r_2 \in \mathbb{R} \) and \(r_1 \neq r_2 \), then \(y(t) = c_1 t^{r_1} + c_2 t^{r_2} \) is the general solution of (6);
- if \(r_1 = r_2 = r \) then \(y(t) = t^r (c_1 + c_2 \ln t) \) is the general solution of (6);
- if \(r_1 = r_2 = \alpha + i \beta \in \mathbb{C} \setminus \mathbb{R} \) then \(y(t) = t^\alpha (c_1 \cos(\beta \ln t) + c_2 \sin(\beta \ln t)) \) is the solution of (6), where \(c_1 \) and \(c_2 \) are arbitrary real constants.